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A Abstract

This paper reports our experiments about parallel and
sequential implementations for combining belief func-
tions with an application to a medical diagnostic system,
We use as a basis existing methods for combining two
belief functions: a direct combination based on Demp-
ster’s rule and an indirect combination through Maébius
transforms. We further explore various parallel algo-
rithms for combining more than two belief functions,
as different Lelief functions can be combined in any or-
der as long as they arc independent of each other. Qur
results indicate that for the general case, the parallel
implementation bused on fast MObius transforms proves
to be the most efficient, However, for practical applica-
tions where most subsets of a frame of hypotheses have
zero probabilities, the parallel implementation based on
an improved direct combination rule remains the most
efficient. _ .

1 Introduction

This paper presents parallel and sequential algorithms
for combining belief functions. The Belicf Function
approach for approximate reasoning, also called the
Dempster-Shafer theory [Shafer, 1976), can be seen as a
generalization of the Probability approach [Pearl, 1988],
since probabilities are assigned directly to subsets of a set
of mutually exclusive and exhaustive hypotheses rather
than each of the hypotheses.

One important problem for the application of the DS-
theory is the efficiency for combining the belief functions
from different evidences. Barnett [1981] proposed a poly-
nomial algorithm which only applies to sets of single hy-
potheses or singletons. Work by ([Shafer and Logan,
1987] and [Shafer et al., 1987]) deals with extended sub-
sets that form a hierarchical structuce. More recently,
Kennes and Smets [1990] apply fast Mébius transforms
to reduce redundant computations and thus improve the
efliciency even for the general case.

In this paper, we are concerned with the efficient comn-
bination for more than two belief functions. We use as
a basis existing methods for combining two belief func-

*This rescarch has been supported by the NSERC Nat-
works of Centers of Excellence Program in Canada.,

tions: a direct combination based on Dempster’s rule and
an indirect combination through Mébius transforms. We
further explore parallel algorithms for combining more
than two belief functions in order to improve the effi-
ciency, as different pieces of evidence can be combined
in any order as long as they are independent of each
other,

To further test our algorithms, we consider a medi-
cal domain that involves the diagnosis of different types
of canine liver diseases (McLeish et al. [1989], [1990],
{1991]). 'This is a domain on which doctors have diffi-
culty predicting precise or single outcomes, as both the
numbers of possible outcomes (14) and available tests
(40) are quite large. In terms of the DS-theory, this
would require a combination of 40 belief functions over a
frame of 14 different hypotheses!. Although our parallel
algorithms can largely speed up the implementation, the
amount of time used is still quite long. Fortunately, for
practical applications, especially our domain, we found
that most of the subsets have zero probabilities; the num-
ber of subsets that have non-zero probabilities, called
the focal elements, are just about 10 on average. Thus,
special versions of our algorithms can be designed to fa-
cilitate the practical application. Qur algorithms ave all
implemented on a Sequent machine using the parallel C
language and the experimental results are reported later
in detail.

2 Review of the DS-theory

In DS-theory. probabilitics are assigned directly to sub-
sots of a frame of hypotheses, called a niass function
(m). Two pieces of evidences can be combined using the
Dempsier's rule, where my and my are the mass func-
tions for the given evidences:

_ S {mu(By)ma(8) | By n By = B)
= (i (Br)ma(Ba) [ B 0 By # 0}

The rule, as stated in [Buchanan and Shoitlifle, 1984),
provides a way of narrowing the hypothesis set with the

m(B)

'See [McLeish and Song, 1991] for the general framework
of our expert system for diagnosing canine liver diseases.
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accumulation of evidence and naturally captures the pro-
cess of diagnostic reasoning in medicine and expert rea-
soning in general.

There are two ways for combining mass functions

roposed in the current literature ([Shafer, 1976] and
[)Kennes and Smets, 1990]). One is the direct combina-
tion based on the Demspter's rule, for which it can be
shown that the following theorem holds:

Theorem 2.1 The direct implementation of the Demp-
ster’s rule needs (2" —~1)? additions and 2"(2" — 1) mul-
tiplications.

The other way for combining mass functions is the in-
direct combination through Mobius transforms. Based
on a mass function, a commonality function (Q) is fur-
ther defined in [Shafer, 1976):

Q(A) =Y _{m(B)| B2 4

With commonality functions, the combination of differ-
ent evidences is reduced to the multiplication of the com-
monality functions,

Q(A) = KQ1(A4)...Qn(A)
where A'=! is a constant that does not depend on A,

A Mobius transformn is a function defined over a
partially ordered set. For example, the computations
from m to Q and vice versa are all Mobius transforms.
The idea of a fast Mobius transform is to decompose
the whole transform into a series of simple transforms
[Kennes and Smets, 1990). In each step, as illustrated
in figure 1, we only consider one hypothesis and its re-
lated transform. For example, the first step will achieve
the transform: {((X,Y) | X #0and (Y =X ot Y =
X U{c})}, where X and Y are two subsets of ©. Then,
by recursively doing this for all the hypotheses, we will
be able to transform from one function to another func-
tion,

{.} {*:} {‘.)} {ﬂa.b} {CL{j;c} {b.c} {abc}
%/

4 ) ° . 'y
{} {a} {b} {ab} {c} {ac} {by} {abyc}

Figure 1: Diagram for the Transform: m — @

To combine mass functions, we follow the path from
{m;} to {Q:} to Q to m, as shown in figure 2. However,
although the transform from @ to m is not provided
in [Shafer, 1976}, it can be proved, following a similar
approach, that the following lemma holds.
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m, @ ma
(my, my) m
mtoq qtom
Q1 Qg
(Ql ] Q!) Q

Figure 2: Combination through M&bins Transform

Lemma 2.1 Suppose m and Q are {wo functions defined
over a frame ©, then we have:

QA) = Y m(B) iff m(A) = Y_ (-1)P-4lQ(B).

BJA BRA

Based on the above lemma, we can now construct a fast
Mabius transform from Q to m. It is the same as the
transform from m to @ except that all the links have
weighting factor (1) (sen [Kennes and Smets, 1990 for
detailed discussions).

Theorem 2,2 The indirect implemeniation of Demp-
ster’s rule through Mdbius transforms needs 3n2"~! ad-
ditions and 2"*! multiplications.

3 Algorithms for Combining Belief
Functions

In this section, we consider how to combine r pieces of
evidence efficiently, with » > 2. In particular, we present
three pairs of algorithms for combining r mass functions:
sequential, parallel, and practical methods.

3.1 Sequential Combination Methods

Based on the two methods introduced earlier, we can
provide two sequential algorithms for combining more
than two belief functions. A sequential algorithm based
on Dempster's rule can be given as follows:

algorithmn 3.1 sequential & direct implenentation
input m[1 : r][0: 2" = 1], » bodies of mass functions,

and n, the cardinality of the frame
output m(1][0: 2" — 1], the combined mass function
begin

for i = 2 step 1 until r do

comb-two(m(1}, m[i])

endfor

end

Here, we use a n-digit binary number to represent a
frame of size n, and for each subset, the ith element
is 1 if the corresponding element is in the subset. Also,
“comb-two” is a procedure for combining two mass func-
tions.
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Corolary 3.1 Algorithm 3.1 needs (r — 1)(2" —1)? ad-
ditions and (r — 1)2°(2" — 1) multiplications.

Another way of implementing the Decmpster’s rule
is 1o compute the combined mass function indirectly
through Mobius transforms. A sequential algorithm for
this method can be given as follows:

algorithm 3.2 sequential & indirect implementation
begin
for { = 1 step 1 until r do
mtoq(m[i])
endfor

for i = 0 stap 1 until 2" - 1 do
for j = 2 step | until r do
m(1][i] «— m[1][i] » m[5][d]
endfor
endfor

qtom(m([1])
en

Corolary 3.2 Algorithm 9.2 needs n(r + 1)2"~! addi-
tions and r2" multiplications.

3.2 Parallel Combination Methods

Since in DS-theory, different pieces of evidence can be
combined in any order as long as they are independent
of each other, we can further explore parallel algorithms
for the combination of more than two belief functions.

algorithin 3.3 parallel & direct implementation
bogin
while r > 1 do
r=r/2
for i = 1 step 1 until v’ do in parallel
comb-two(m(i], m[r' + 1])
endfor
if odd(r) then
mir'+ 1] =mlrlir=r+1
olse r = r/
endwhile
end

Corolary 3.3 Algorithm 3.8 needs [log r](2" - 1)? addi-
tions and [logr|2"(2" ~ 1) multiplications, where [logr]
stonds for the smallest integer that is grealer or equal to
log r.

algorithm 3.4 parallel & indirect implementation
bogin
for i = 1 step ! until r do in pacallel

mtoq(ml[i])
endfor

for i = () step 1 until 2" — 1 do in parallel
for j = 2 step 1 until r do
m]{i] e m(1][i] » m(j](i]
ondfor
endfor

qtom(m[1])
end

Corolary 3.4 Algorithm 8.4 needs n2" additions and
2" + r multiplications.

3.3 Practical Combination Methods

To further test our algorithms, we choose a medical do-
main that involves the diagnosis of canine liver diseases.
We found that for such a domain, most of the mass funec-
tions only have a small number of non-zero subsets, or
focal elements. Although the above algorithms work for
general cases, for practical reasons, we must revise them
to facilitate the almost null distribution of mass func-
tions.

In the following we first provide a revised procedure
for direct combination based on Dempster’s rule.

function comb-two'(my, mg, Ly, La)
begin
for { = 1 step 1 until L, do
for j = 1 step | until L, do
8 b~ 81[1'] & OQU
ms] «~ m[s] + my[i] ¥ ma[j)
endfor
endfor
K —1-=m|0]
for i =1 step ! until 2" - 1 do
if m[i] > 0 then
Le—~L4+1
81[L] — i; my[L) - m[i]/K
endif
endfor
return L
end

Here, “&” is the bitwise operator for the logical opera-
tion “AND", corresponding to the intersection operation
between two subsets.

Then a parallel algorithm for combining more than
two mass functions can be designed as follows:

algorithm 3.5 practical par. & dir. implementation
begin
while r > | do
Land r/2 -
-..r i =1 step 1 until ' do in parallel
L[] — comb-two’(ml[i], m[»' 4 i], L[], L[+’ + 1])
endfor
if odd(r) then
mr' + 1] —mrjr —=r' 41
else 1 o rf
ondwhile
end

To see how speed can be gained for the above algo-
rithm, let us consider our domain of canine liver dis-
easns. For a frame of size 14, 2'4 gives us 16,384, Thus,
the direct combination of two mass functions would re-
quire (2'1-1)? additions and 2'4(2!1—1) multiplications.




However, the above improved direct combination would
only need about 100 additions and 110 multnphcatnons.
as the average number of focal elements is 10 for any
mass functions in our domain (see [McLeish and Song,
1991] for different methods of extracting mass functions
from medical data collected over time).

Similarly, we can add a testing statement in a Mdbius
transform and only perform an addition when the new
clement is non-zero. Since the cost of a testing statement
is usually less than an arithmetic operation, we would
expect some saving of time when most of the subsets
have zcro probabilities. 'The modified algorithin based
on the Moébius transforms will be called algorithm 3.8 in
our ¢xpetiments.

4 Experimental Results

Our algorithms are all implemented on a Sequent Sym-
metry machine using the Parallel C language [Osterhaug,
1989{ A Sequent machine has an architecture of truly
multiple processors and a shared memory, all connected
through a system bus. T'his provides a way for increasing
the accessibility of data and minimizing the commnnica-
tion cost. As aresult, we can actually run our algorithms
on this machine and observe the improvement of speed
for a problem of reasonable size,

In our experiments, we run our algorithms on & ma-
chine of ten processors. Qur results can further be im-
proved when more processors are available, say 16 or
32, which become more and more common for Sequent
machines. Although our system is not large, it already
shows the potential of using parallel algorithms for effi-
ciently cotnbining belief functions.

[# Maws | Alga2 [ATlg3.4 [ Algdb [ Alg35 ]
02 3261 O.18] U43] 750
03 1771 9.2 | 095 | 759
04 9219 | 941 045 | 7.72
05 26.74 | 9.87| 1.51] 7.7
08 40.22 | 13.88| 1.49 | 11.30
10 49.19 | 14.00 | 2.04 | 11486
15 71,68 | 18.65 | 2.35 [ 16.15
16 76.21 | 23.01 | 234 18.65
20 04.21 | 23.30 | 2.88 | 18.86
25 | 117.40 | 27.93 | 8.52 | 22.67
30 | 140.49 | 32.60 | 3.54 | 26.29
32 | 14974 87.03| 3.86 | 20.70
36 | 164.69 | 87.20 | 4.39 | 30.01
40 | 18818 | 41.84| 4.30 | 33.67

Talle 1: Results of Sequential and Parallel Experiments

As our results illustrate, for the general case, the par-
allel implementation based on the fast Mobius trans-
forms (algorithm 3.4) is the most efficient. However, for
many real applications where most of the subsets have
zero nasses, the parallel implementation based on the
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improved direct combination (algorithm 3.5) is still the
most efficient?.

Further work is being carried out to minimize redun-
dant computations in a Mdbius transform and explore
parallelistn in Dempster’s rule. Mcthods working with
continuous data are also being investigated with an ap-
plication to our domain of liver disease diagnosis.
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